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Abstract: The Diels-Alder adduct of 2,4-dimethylfuran and I-cyanovinyl acetate was converted with high
stereoselectivity into 1,3,5-trimethylcyclohexen-4,6-diol derivatives that can be cleaved inio protected
polypropionare fragmenis.

Keywords:  1,5-dimethyl-7-oxabicyclo[2.2.1/hept-5-en-2yl, S\2' ring opening, (IRS,4SR,5SR,6SR)-4,6-
dibenzyloxy-1,3,5-trimethylcyclohexene, (2RS,3SR,4RS, SRS)-3, 5-dibenzyloxy-2,4-dimethyl-6-oxoheptanal.

A large variety of natural products of biological interest contain polypropionate fragments (chains with
alternating hydroxyl and methy] substituents).! Several synthetic methods have been proposed to obtain these
systems.23 Recently, we have shown? that 2,4-dimethylfuran (obtained in 3 steps from acetone?) can be readily
converted into optically pure 1,5-dimethyl-7-oxabicyclo[2.2.1}hept-5-en-2-yl derivatives such as (-)-1 and
(+)-2. After double hydroxylation of the olefinic moiety of (-)-1 and several transformations the doubly
branched heptono-1,4-lactones (+)-3 and (+)-4 were obtained with high stereoselectivity.2

Q We report here a new approach to the synthesis of
N polypropionate fragments starting with the Diels-Alder
N adduct 5 of 2,4-dimethylfuran to 1-cyanovinyl acetate.s It

relies on the ethereal ring opening of 7-oxabi-

)1 (»)-2 cyclo[2.2.1)heptenes following a method developed by
R*=(15)-camphanoyl R'=(1A)-camphanoyl Plumet and co-workers.6

Reaction of 5 (THF, -78°C — 20°C) with p-chloro-
benzenesulfenyl chloride (one equivalent), followed by
work-up with aqueous NaHCOj3 gave 6 in nearly

Me Me quantitative yield.”7 Saponification of the cyanoacetate
Me Me

moiety of 6 under usual conditions (MeONa/MeOH then

H,CO)8 led to isomerization of the alkene with formation
"3 )14

of 6-(p-chlorophenylthio)-1,5-dimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-one. Under milder conditions
(NaHCO3/MeOH, then H;CO) the desired methylene ketone 7 could be obtained in 92% yield, The exo
configuration of the arylthio substituent in 6 was expected for steric reasons®9 and was confirmed in
compound 10 described below. The lithium enolate of 7, obtained by deprotonation with (Me;Si);NLi (THF,
-78°C), was quenched with Mel (-78°C) and afforded the product of mono o-methylation 8 (80%).10 The high
exo facial selectivity of this alkylation was expected for steric reasons.5-11 It was confirmed by the absence of
vicinal coupling between protons H-C(4) and H,,4,-C(3).12:13 Depending on the nature of the reducing agent,
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ketone 8 could be transformed either into endo alcohol 9 or its exo isomer 10 (see Table).14 With L-Selectride
(LiB[CH(Me)Et]3H) only the exo alcohol 10 was formed and it was isolated in 87% yield. In this case, the exo
methyl group at C(3) impedes the approach of the reagent to the carbonyl moiety onto its exo face.15
The NOESY experiment with 10 showed interactions between protons H-C(2), H-C(3) and H-C(6) and thus
proved the exo configuration of the C(2), C(3) and C(6) substituents in this compound. With reagents such as
DIBAH (diisobutylaluminium hydride) or mixed hydrides resulting from the combination of NaBH, with Lewis
acids, concurrent attack on the exo face of the bicyclic ketone 8 becomes possible, perhaps because of
coordination with the 7-oxa bridge. The best yield (73%) of endo alcohol 9 was obtained with a 4:1 mixture of
ZnCly-Et20 and NaBHy in dry ether at 0°C.

CN eNn 1 Nchos 1 (TMS)zNLI o
“OAc THF -73°c “oAc 2 cho 2 Me,
Me (99%) (82%) (80%) Me

(x)8

Ar=p-chiorophenyl

Table. Reduction of 8 > 9 + 10
Conditions 9:10 Yield
L-Selectride/THF, -78°C <5:95 87%
Ar 4OH OH Li(z-BuO), AIH/THF, 20°C 1:5.5 95%
Naﬂ-lyEtOHIHLO, 20°C 1:2.2 97%
Me DIBAH/CH,Cl,, -78°C 1:1.4 95%
NaBH4+Znl,/Et0, 0°C 3:1 >90%
NaBH,+ZnCl,/Et;,0, 0°C 7.3:1 83%

Benzylation of 10 under phase transfer catalysis conditions (BnBr, toluene, 50% NaOH/H20, BuyNBr)16
furnished 11 which was isomerized into the 7-oxanorbornene derivative 12 (86% based on 10) on treatment
with MeONa in MeOH (reflux). The reaction was accompanied by the formation of 5% of benzyl 6-endo-(p-
chlorophenylthio)-1,3-exo-dimethy!-5-methylene-7-oxabicyclo[2.2.1]hept-2-exo-yl ether (C(6)-epimer of 11).

gngr A OBN | 1AIH,
THF
§NT9Me Me™ 5 73 (95%) Me Mo .78°C
I‘rom 10) (86%)
1 12
/N
ClsC—éH ArS 1.0 OBn OBn
3 " o 4 H
(76%) Me! Me  “ThF Mo 2.NalO4 Me Me
n (56%) (70%)
15 16 17

Oxidation of 12 with H20, in AcOH (20°C) afforded the corresponding sulfone 13 (95%).17 Treatment of 13
with LiAlHy in THF at -78°C62.18 yielded the cyclohexenediol derivative 14 (86%) with high stereoselectivity.
Hydride addition to the sulfonyl substituted double bond in 13 was expected to prefer the exo face of
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the bicyclic system for steric reasons and because of the possible pre-coordination of LiAlH4 to the 7-oxa
bridge. The structure of 14 was confirmed by its spectral data and that of the corresponding dibenzyl dicther
1519 obtained in 76% yield by treatment with benzyl 2,2,2-trichloroacetimidate in the presence of a catalytic
amount of CF;SO3H.202! The cyclohexane derivatives 14 and 15 probably adopt the pseudo chair
conformation A suggested by the NOESY spectrumn of 15 that showed significant NOE’s between the proton
signals of Me-C(3) and H-C(5).

Attempts to cleave the double bond of 15 with ozone, KMnO,/18-
-crown-6, OsO4/PDC, NalO4/RuCl3?2 or H,CrO; were not successful
Desulfonation with AVHg23 or sodium dithionite?4 also failed. Finally we
found that the treatment of 15 with butylmagnesium chloride in THF in the
presence of Pd(acac), or Pd(CF3COO)225 afforded 16 (56%). Direct cleavage

of the C=C double bond of 16 with O3, RuCl3/NalO422 or OsO4/NalO, gave intractable mixtures of products.
Dihydroxylation of 16 with N-methylmorpholine N-oxide and a catalytic amount of OsO, (THF/-BuOH/H20
12:10:1, 20°C, 54 h) gave a 4:3 mixture of diastereomeric diols which was oxidized with NalOy/NH,Cl/MeOH
into the 6-oxoheptanal 17 (70% based on 16).26:27

This report demonstrates the possibility of conversion of acetone into polypropionate fragments
containing four contiguous chiral carbon centres in a highly stereoselective fashion and as homochiral synthons
since the optically pure intermediates (-)-1 and (+)-2 arc readily available.28 Work is underway to define
conditions that will transform (-)-1 and (+)-2 into all possible stereomers of 17 and analogues.
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